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Abstract. In the mid-seventies, Case and Herschbach argued that for complex-forming three-atom reac-
tions governed by long-range forces and performed in supersonic molecular beam experiments, vectorial
properties are determined by a single parameter Λ′ = 〈L′/(L′+j′)〉, L′ and j′ being respectively the moduli
of the orbital and rotational angular momenta of the products. A simple mathematical relation between
vectorial properties and Λ′ was then proposed. However, Λ′ must be determined beforehand by phase space
theory calculations. Besides, we have recently shown that scalar properties are mainly controled by two
factors ρ′

1 and ρ′
2 respectively called angular excitation and diatomic inertial contribution. We show here

that these factors control also vectorial properties. Moreover, the way they control them is summarized in a
set of four figures. The advantage of our method is that ρ′

1 and ρ′
2 are related to the mechanical parameters

of the reaction by very simple formulas, contrary to Λ′. Last by not least, our parameters appear to be
mostly independent, so that vectorial properties cannot be said to strictly depend on Λ′. Nevertheless, it
turns out that the rule proposed by Case and Herschbach is reasonable in many realistic situations.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.) – 34.50.Lf Chemical reactions,
energy disposal, and angular distribution, as studied by atomic and molecular beams – 82.20.Bc State
selected dynamics and product distribution – 82.20.Db Transition state theory and statistical theories of
rate constants

1 Introduction

The experimental data providing detailed information
about the dynamics of elementary reactions of the type
A + BC → AB + C (A, B and C are three atoms) are
energy, angular and rotational polarization distributions,
all of them measurable in the products [1,2]. Energy dis-
tributions show how the energy available to the products
is partitioned among translation, vibration and rotation
motions. The angular distribution shows how the angle
between the reagent and product relative velocity vectors
is distributed. Finally, the rotational polarization distri-
bution shows how the angle between the reagent relative
velocity vector and the rotational angular momentum of
AB is distributed. Though these scalar and vectorial data
do not provide direct information about nuclear motions
in the strong coupling region (SCR) where the process of
bond-breaking/bond-forming takes place, they contribute

� This work has been presented in the tenth edition of the
Stereodynamics meeting which was held in Osaka (Japan) from
November 28th to December 3th, 2004.

a e-mail: l.bonnet@lpcm.u-bordeaux1.fr

strongly to the validation of theoretical models describing
the entire dynamics from the reagents onto the products.

In the seventies, Case and Herschbach [3,4] showed
that for complex-forming elementary reactions governed
by long-range forces, vectorial properties are determined
by only two parameters, Λ = 〈L/(L + j)〉 and Λ′ =
〈L′/(L′ + j′)〉. L and j are respectively the moduli of the
orbital and rotational angular momenta of the reagents.
L′ and j′ are the analogous quantities in the products.
Actually, in the supersonic crossed beam experiments per-
formed nowadays, j is almost zero so that Λ ≈ 1. There-
fore, according to Case and Herschbach, vectorial proper-
ties are determined by only one parameter, i.e. Λ′.

Besides, the authors derived some years ago a simple
model — the partial angular constraint model (PACM)
— in order to provide some conceptual and technical tools
helpful for the understanding of the global shape of energy
distributions in the products of the same processes [5].
This model was obtained by simplifying Phase space the-
ory (PST), then arriving at an analytical expression of
the translational energy distribution in which two major
factors of the dynamics appear explicitly. These factors
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are the angular excitation ρ′1 and the diatomic inertial
contribution ρ′2 .

ρ′1 is defined by

ρ′1 =
JM

J ′
M

(1.1)

and
JM = min(LM ; J ′

M ) (1.2)

where LM is the maximum value of the reagent orbital an-
gular momentum consistent with complex formation and
J ′

M is the maximum value of the total angular momentum
J compatible with the available energy E′ in the products.
JM is thus the maximum value of the total angular mo-
mentum consistent with the reaction.

ρ′2 is defined by

ρ′2 =
IAB

IAB + I‡AB–C

(1.3)

where IAB is the moment of inertia of AB and I‡AB–C
may be roughly viewed as the moment of inertia of C
with respect to AB at the orbiting transition state ABC‡
between the intermediate well and the products. In other
words, ρ′2 is the contribution of the diatomic AB to the
total moment of inertia of the activated complex ABC‡.
Both parameters belong to the range [0, 1]. More details
on these parameters are given in Sections II.C.3, II.D.1
and II.D.2 of reference [5].

As long as ρ′1 is lower than ∼2/3, ρ′1 and ρ′2 are the de-
termining factors of the energy partitioning. On the other
hand, when ρ′1 is larger than ∼2/3, a third factor turns
out to play a role, namely, the J-dependence of the reac-
tion probability that we shall call Rγ(J) in the followings
(see Sect. II.E of Ref. [5]).

Our goal in this work is to prove that in the framework
of PST, vectorial properties are mainly determined by the
same independent parameters as scalar properties, i.e. ρ′1,
ρ′2 and the shape of Rγ(J) (to a less extent, however).
Moreover, we compare our approach with the one of Case
and Herschbach.

The paper is organized as follows. We pinpoint the key
factors evoked above (Sect. 2). We apply some results of
the previous section to the description of angular and rota-
tional polarization distributions (Sect. 3), and repeat the
same work for Λ′ (Sect. 4). We then study the dependence
of these quantities on the factors pointed out in Section 2
(Sect. 5). We finally conclude (Sect. 6).

2 Evidencing the key factors

2.1 Defining the system

The collisional process of interest is

A + BC → ABC → A + BC channel α (2.1)
→ AC + B channel β (2.2)
→ AB + C channel γ. (2.3)

ABC is a long-lived complex due to the existence of a deep
well in the strong coupling region (SCR) and α, β and γ
are the three possible exit-channels leading respectively to
one inelastic and two reactive collisions.

In the present work, we shall consider supersonic
crossed beam experiments in which the relative collision
energy E between A and BC is well controlled [1,2] and
BC is mainly prepared in its rovibrational ground state.
Scalar and vectorial properties are supposed to be mea-
sured in product channel γ. The energies available to reac-
tants and products γ are E and E′, respectively (amount
of energy above the zero point energy). E′ is related to E
by the relation E′ = E − Q′, where Q′ is the exoergicity
of reaction (2.3). µ is the reduced mass of A with respect
to BC and µ′ that of C with respect to AB. m′, r′e, ω′ and
n′ are the reduced mass, the equilibrium distance, the vi-
brational frequency and the vibrational quantum number
of AB. The vibrational energy of AB is E′

n = �ω′n′. The
maximum value of the classical vibrational action is thus
given by x′

M= E′/�ω′ and the maximum value of n′ is
N ′ = Int(x′

M ) (Int is for “integer”).
In each channel, the dynamics are supposed to be prin-

cipally governed by isotropic van der Waals forces, a stan-
dard approximation. For instance, the potential energy of
interaction between fragments A and BC is given by

V (R) = −C6

R6
, (2.4)

where C6 is the sum of the dispersion and induction co-
efficient of the reagents and R is the distance between A
and the center of mass of BC. Analogous expressions hold
for channels β and γ, the sum of the dispersion and in-
duction coefficients of products γ being denoted C′

6. For
the sake of convenience, only the mechanical parameters
involved in the future developments have been specified.
A more detailed presentation of the system is given in
Section II.A of reference [5].

2.2 The basic density

2.2.1 Generalities

Let f ′
T = E′

T /E′ be the fraction of E′ in the recoil motion.
Let θ be the scattering angle, i.e. the angle between the
reagent and product relative velocity vectors k and k′.
Let χ be the product rotational polarization angle, i.e. the
angle between k and the rotational angular momentum j′
of AB.

We wish now to derive the PST type [6,7] expression
of the density of probability P (f ′

T , n′, cos θ, cosχ) that the
products are formed with f ′

T , n′, cos θ and cosχ. This
density allows the calculation of any distribution or av-
erage value of physical quantities measurable by the ex-
perimentalist. P (f ′

T , n′, cos θ, cosχ) can be derived in the
framework of the following statistical assumption; in the
interval between the capture and the final dissociation,
the dynamical state of ABC is supposed to wander about
in the region of the phase space associated with the strong



L. Bonnet and J.C. Rayez: On the key factors of angular correlations in complex-forming elementary reactions 67

coupling region (SCR). Consequently, the final fragments
are equally likely to be on any trajectory emerging from
the SCR, i.e. crossing the orbiting transition state (OTS)
delimiting the SCR in the direction of channels α, β and γ.
Following reference [5] (see also Refs. [97, 112] therein), it
can be shown that such an assumption leads to the follow-
ing expression for the distribution P (f ′

T , n′, cos θ, cosχ):

P (f ′
T , n′, cos θ, cosχ) ∝∫ JM

0

dJ JRγ(J)
Fγ(f ′

T , n′, cos θ, cosχ|J)
Fγ(J)

(2.5)

where

Rγ(J) =
Fγ(J)

Fα(J) + Fβ(J) + Fγ(J)
(2.6)

is the probability of reaction to channel γ. Fα(J),
Fβ(J) and Fγ(J) are the fluxes of trajectories emerg-
ing from the SCR with a total angular momentum J
and leading to channels α, β and γ respectively, and
Fγ(f ′

T , n′, cos θ, cosχ|J) is the flux of trajectories emerg-
ing from the SCR in the direction of channel γ with f ′

T ,
n′, cos θ, cosχ and J . The maximum value JM of J con-
sistent with the formation of products γ was specified pre-
viously (Eq. (1.2)). It involves the maximum value LM of
the orbital angular momentum consistent with complex
formation, related to the collision energy E by

LM = (3µ)1/2(2C6)1/6E1/3, (2.7)

and J ′
M , given explicitly later (Eq. (2.39)). The maximum

values of J consistent with the energy disposals E and Eβ

on channels α and β will be denoted Jα
M and Jβ

M .
As shown in reference [5], the reaction probability

Rγ(J) has two limiting dependences on J , referred to as
cases I and II in the following. In case I, Rγ(J) is almost
constant, as for instance when

J ′
M ≈ Jα

M and J ′
M ≥ Jβ

M (2.8)

(see Fig. 14 of Ref. [5] and the related discussion). In
case II, Rγ(J) is roughly proportional to Fγ(J) which de-
creases down to zero over the range [0, J ′

M ], as for example
when,

J ′
M < max(Jα

M ; Jβ
M ) (2.9)

(see Fig. 15 of Ref. [5] and the related discussion). As
a consequence, the distribution P (f ′

T , n′, cos θ, cosχ) be-
comes respectively:

P (f ′
T , n′, cos θ, cosχ) ∝∫ JM

0

dJ J
Fγ(f ′

T , n′, cos θ, cosχ|J)
Fγ(J)

(2.10)

in case I and

P (f ′
T , n′, cos θ, cosχ) ∝∫ JM

0

dJ JFγ(f ′
T , n′, cos θ, cosχ|J) (2.11)

in case II. These two situations of constant and decreasing
reaction probabilities were shown to lead to significant
differences in the energy partitioning in the case where
ρ′1 is larger than ∼2/3. We shall now prove that in these
limiting cases, vectorial properties, like scalar ones, are
mainly determined by ρ′1 and ρ′2.

2.2.2 The constant reaction probability case

Within the framework of (i) the rigid rotor harmonic os-
cillator (RRHO) approximation and (ii) a semiclassical
treatment where vibrations are quantized whereas classi-
cal mechanics is used for the description of rotation and
translation motions, the remaining equations necessary for
the calculation of equations (2.10) and (2.11) are:

Fγ(J) =
N ′∑

n′=0

∫
df ′

T d cos θd cosχFγ(f ′
T , n′, cos θ, cosχ|J)

(2.12)
and

Fγ(f ′
T , n′, cos θ, cos χ|J) =

∫
dΓ ′k′Θ(k′)

7∏
i=1

δi. (2.13)

The various terms in the above integral are as follows; a
suitable set of phase space coordinates for the description
of the dynamical state of the products is the distance R′
between C and the center of mass of AB, its conjugate
momentum P ′, the distance r′ between A and B, its con-
jugate momentum p′, the modulus j′ of j′, the projection
j′z of j ′ on a fixed z-axis, the modulus L′ of the orbital
angular momentum of C with respect to AB, the projec-
tion L′

z of L′ on the z-axis, and their conjugate angles α′
j ,

β′
j, α′

L and β′
L. dΓ ′ is the elementary volume of the phase

space given by:

dΓ ′ = dR′dP ′dr′dp′dj′dj′zdL′dL′
zdα′

jdβ′
jdα′

Ldβ′
L. (2.14)

As stated previously, k′ = P ′/µ′ is the radial velocity
of recoil of AB with respect to C. Θ s the function of
Heaviside. The delta functions are:

δ1 = δ(R′ − R′
∞), (2.15)

δ2 = δ

(
f ′

T − H ′
T

E′

)
(2.16)

δ3 = δ

(
n′ − H ′

V

�ω′

)
, (2.17)

δ4 = δ(cos θ − fθ(α′
L, β′

L, J, L′, j′)), (2.18)
δ5 = δ(cosχ − fχ(β′

j , J, L′, j′)), (2.19)

δ6 = δ(J − j ′ − L′) (2.20)

and
δ7 = δ(E′ − H ′). (2.21)
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The Hamiltonian functions H ′
T , H ′

V and H ′
R for the trans-

lation, vibration and rotation motions are

H ′
T =

P ′2

2µ′R′2 +
L′2

2µ′R′2 + V (R′), (2.22)

H ′
V =

p′2r
2m′r′2e

+ v(r′), (2.23)

H ′
R =

j′2

2m′r′2e
(2.24)

and the total Hamiltonian function H ′ is

H ′ = H ′
T + H ′

V + H ′
R. (2.25)

Moreover, it is shown in Appendix A that

fθ(α′
L, β′

L, J, L′, j′) = cosα′
L sin β′

L + Qθ sin α′
L cosβ′

L

(2.26)
with

Qθ =
J2 + L′2 − j′2

2JL′ (2.27)

and in Appendix B that

fχ(β′
j , J, L′, j′) = (1 − Q2

χ)1/2 cosβ′
j (2.28)

with

Qχ =
J2 + j′2 − L′2

2Jj′
. (2.29)

In equation (2.13), the first delta function defines the lo-
cation of a product hypersurface through which the flux
is calculated, the second one implies that the fraction of
translational energy is f ′

T , the third one causes the vibra-
tional action to have the integer value n′, the fourth and
fifth ones ensure that the cosine of the scattering and ro-
tational polarization angles are equal to cos θ and cosχ re-
spectively, the sixth one ensures conservation of J and the
last one ensures conservation of the total energy. Proceed-
ing as in Appendix B of reference [8], using in particular
the following theorem

δ(f(x)) =
n∑

i=1

1
|f ′(xi)|δ(x − xi) (2.30)

(with f(xi) = 0 and f ′(xi) �= 0, n being the number of
simple roots), it is found after some algebraic steps, that
equation (2.13) reduces to

Fγ(f ′
T , n′, cos θ, cosχ|J) ∝ D−1

∫
dL′dα′

Ldβ′
Lδ4δ5

(2.31)
with

D = J

(
1 − n′

x′
M

− f ′
T

)1/2

. (2.32)

δ4 is still given by equations (2.18), (2.26) and (2.27), while
δ5 is now given by:

δ5 = δ(cosχ + (1 − Q2
χ)1/2 cosβ′

L). (2.33)

The maximum value of L′ and the value of j′ consistent
with f ′

T and n′ are given by [5,8]

L′
M (f ′

T ) = L′0
Mf

′1/3
T (2.34)

and

j′ = j′0M

(
1 − n′

x′
M

− f ′
T

)1/2

(2.35)

with
L′0

M = (3µ′)1/2(2C′
6)

1/6E′1/3 (2.36)

and
j′0M =

(
2m′r′2e E′)1/2

. (2.37)

In addition to that, L′ in equation (2.31) must satisfy the
triangular inequality

|J − j′| ≤ L′ ≤ min(J + j′; L′
M (f ′

T )). (2.38)

A quite good approximation of J ′
M being [5]

J ′a
M =

(
(j′0M )2 + (L′0

M )2
)1/2

, (2.39)

the angular excitation ρ′1 (Eqs. (1.1) and (1.2)) is given
by

ρ′1 ≈ JM

J ′a
M

. (2.40)

Moreover, the diatomic inertial contribution ρ′2 (Eq. (1.3);
see also Eq. (II.C.27) in Ref. [5]) is given by

ρ′2 =
(j′0M )2

(J ′a
M )2

. (2.41)

Setting

u =
J

J ′a
M

, (2.42)

v =
L′

L′0
M

(2.43)

and

w =
j′

j′0M
=

(
1 − n′

x′
M

− f ′
T

)1/2

(2.44)

and substituting them to J , L′ and j′ in equations (2.10),
(2.12) and (2.31), we arrive at

P (f ′
T , n′, cos θ, cosχ) ∝

∫ ρ′
1

0

duu
Gγ(f ′

T , n′, cos θ, cosχ|u)
Gγ(u)

(2.45)
where

Gγ(J) =
N ′∑

n′=0

∫
df ′

T d cos θd cos χGγ(f ′
T , n′, cos θ, cosχ|u)

(2.46)

Gγ(f ′
T , n′, cos θ, cos χ|u) ∝ D−1

∫
dvdα′

Ldβ′
Lδ4δ5 (2.47)
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and the two quantities Qθ and Qχ present in δ4

(Eqs. (2.18) and (2.26)) and δ5 (Eq. (2.33)) read

Qθ =
u2 + (1 − ρ′2)v2 − ρ′2w2

2uv(1 − ρ′2)1/2
(2.48)

and

Qχ =
u2 − (1 − ρ′2)v

2 + ρ′2w
2

2uwρ
′1/2
2

. (2.49)

In addition to that, the triangular inequality (Eq. (2.38))
transforms to

vmin ≤ v ≤ vmax (2.50)

with

vmin =

∣∣∣∣∣
u

(1 − ρ′2)1/2
−

(
ρ′2

(1 − ρ′2)

)1/2

w

∣∣∣∣∣ (2.51)

and

vmax = min

(
u

(1 − ρ′2)1/2
+

(
ρ′2

(1 − ρ′2)

)1/2

w; f ′1/3
T

)
.

(2.52)
After a careful inspection inspection of equations (2.44–
2.52), we arrive at the following key conclusion: in the
present case where the reaction probability is a con-
stant, the only independent parameters appearing in
P (f ′

T , n′, cos θ, cosχ) are the angular excitation ρ′1, the di-
atomic inertial contribution ρ′2 and the maximum value
x′

M of the vibrational action (we recall that N ′ in
Eq. (2.46) is the integer part of x′

M ). Therefore, they fully
determine both the scalar and vectorial properties of the
chemical reaction. As far as angular correlations are con-
cerned, we shall see in the following that x′

M does not play
a significant role.

2.2.3 The decreasing reaction probability case

From equation (2.11), P (f ′
T , n′, cos θ, cosχ) is now

given by

P (f ′
T , n′, cos θ, cos χ) ∝

∫ ρ′
1

0

du uGγ(f ′
T , n′, cos θ, cos χ|u).

(2.53)
Therefore, we arrive at the same conclusion as previously,
for exactly the same reasons.

3 Description of vectorial properties

3.1 On the calculation of 〈cos2 θ〉

The average value of cos2 θ is given by

〈cos2 θ〉 =
∫ 1

−1

d cos θP (cos θ) cos2 θ (3.1)

where P (cos θ) is the distribution of cos θ. Following Sec-
tion 2, we have

P (cos θ) ∝
∫ JM

0

dJJ
Fγ(cos θ|J)

Fγ(J)
(3.2)

in case I and

P (cos θ) ∝
∫ JM

0

dJJFγ(cos θ|J) (3.3)

in case II. Fγ(cos θ|J) is the flux of trajectories emerging
from the SCR in the direction of channel γ with cos θ and
J , quantity given by

Fγ(cos θ|J) =
N ′∑

n′=0

∫
dΓ ′k′Θ(k′)δ1δ3δ4δ6δ7. (3.4)

After some algebraic steps, we arrive at

Fγ(cos θ|J) ∝ J−1
N ′∑

n′=0

∫
dL′dj′dα′

Ldβ′
Lδ4 (3.5)

where the angular momenta must satisfy equation (2.38).
Moreover,

Fγ(J) =
∫ 1

−1

d cos θFγ(cos θ|J)

∝ J−1
N ′∑

n′=0

∫
dL′dj′dα′

Ldβ′
L. (3.6)

Using the same change of variables as in Section 2
(Eqs. (2.42–2.44)) leads to

P (cos θ) ∝
∫ ρ′

1

0

du u
Gγ(cos θ|u)

Gγ(u)
(3.7)

in case I and

P (cos θ) ∝
∫ ρ′

1

0

du uGγ(cos θ|u) (3.8)

in case II with

Gγ(cos θ|u) ∝ u−1
N ′∑

n′=0

∫
dv dw dα′

Ldβ′
Lδ4 (3.9)

and

Gγ(u) =
∫ 1

−1

d cos θGγ(cos θ|u)

∝ u−1
N ′∑

n′=0

∫
dvdwdα′

Ldβ′
L. (3.10)

The triangular inequality is given by equations (2.50–2.52)
with

f ′
T = 1 − n′

x′
M

− w2. (3.11)

As far as the numerical calculation of 〈cos2 θ〉 is concerned,
the Dirac distribution δ4 is conveniently replaced by any
approximate function (Gaussian, Lorentzian, etc.).
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3.2 On the calculation of 〈cos2 χ〉
The mathematical developments are exactly the same as
in the previous section with cos θ and δ4 replaced by cosχ
and δ5 respectively.

4 Description of the parameter Λ′

Λ′ is the average value of

Ω′ =
L′

L′ + j′
. (4.1)

It is thus given by

Λ′ =
∫ 1

0

dΩ′P (Ω′)Ω′ (4.2)

where P (Ω′) is the normalized distribution of Ω′.
Fγ(Ω′|J) being the flux of trajectories emerging from the
SCR in the direction of channel γ with Ω′ and J , we have

P (Ω′) ∝
∫ JM

0

dJ J
Fγ(Ω′|J)

Fγ(J)
(4.3)

in case I and

P (Ω′) ∝
∫ JM

0

dJJFγ(Ω′|J) (4.4)

in case II. Fγ(Ω′|J) is given by

Fγ(Ω′|J) =
N ′∑

n′=0

∫
dΓ ′k′Θ(k′)δ1δ3δ6δ7δ8 (4.5)

with

δ8 = δ

(
Ω′ − L′

L′ + j′

)
. (4.6)

After some steps of algebra, it is found that

Fγ(Ω′|J) ∝ J−1
N ′∑

n′=0

∫
dj′

j′

(1 − Ω′)2
. (4.7)

Moreover,

Fγ(J) =
∫ 1

0

dΩ′Fγ(Ω′|J) ∝ J−1
N ′∑

n′=0

∫
dj′dL′. (4.8)

j′ must satisfy the triangular inequality (2.38) which be-
comes in the present case

|J − j′| ≤ Ω′

1 − Ω′ j
′ ≤ min(J + j′; L′

M (j′, n′)) (4.9)

with

L′
M (j′, n′) = L′0

M

(
1 − n′

x′
M

−
(

j′

j′0M

)2
)1/3

. (4.10)

Using the same change of variables as in Section 2 (Eqs.
(2.42–2.44)) leads to

P (Ω′) ∝
∫ ρ′

1

0

du u
Gγ(Ω′|u)

Gγ(u)
(4.11)

in case I and

P (Ω′) ∝
∫ ρ′

1

0

du uGγ(Ω′|u) (4.12)

in case II with

Gγ(Ω′|u) ∝ u−1
N ′∑

n′=0

dw dα′
Ldβ′

L

w

(1 − Ω′)2
(4.13)

and

Gγ(u) =
∫ 1

0

dΩ′Gγ(Ω′|u) ∝ u−1
N ′∑

n′=0

∫
dvdw. (4.14)

The triangular inequality is given by equations (2.50–2.52)
with

v =
Ω′

1 − Ω′

(
ρ′2

1 − ρ′2

)1/2

w (4.15)

and

f ′
T = 1 − n′

x′
M

− w2 (4.16)

(Eq. (4.15) is deduced from Eqs. (2.39), (2.41), (2.43),
(2.44) and (4.1)).

From equations (4.11–4.16) and (2.50–2.52), we ar-
rive at the same conclusion as previously: in the limiting
cases I and II, the only independent parameters appearing
in P (Ω′) are the angular excitation ρ′1, the diatomic in-
ertial contribution ρ′2 and the maximum value x′

M of the
vibrational action.

5 Results and discussion

〈cos2 θ〉 is represented in terms of ρ′1 and ρ′2 in Figures 1
and 2. Figure 1 corresponds to case I and N ′ = 0 and Fig-
ure 2 to case II and N ′ = 0. The same average quantity
has also been calculated for both cases I and II but for
N ′ = 5 instead of 0. Since there is no significant difference
with the situation N ′ = 0, these graphs are not shown.
From these calculations, both the number N ′ = Int(x′

M )
of available vibrational states and the shape of Rγ(J) have
a weak influence on 〈cos2 θ〉 (except for ρ′1 approaching 1).
For small values of the angular excitation ρ′1, 〈cos2 θ〉 is
close to 1/3. The reason is as follows: when J is zero, which
corresponds to ρ′1 = 0, L′ and j′ have same modulus and
opposite direction. This direction is however random. As
is well-known, the angular distribution P (θ) in the whole
space is then proportional to sin θ (whereas the analogous
distribution in the collision plane is a constant) [3,4,9].
Given that P (cos θ)d cos θ = P (θ)dθ, it is a simple mat-
ter to show from equation (3.1) that 〈cos2 θ〉 = 1/3. For
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Fig. 1. 〈cos2 θ〉 in terms of ρ′
1 and ρ′

2 in case I and N ′= 0.
Contour numbers correspond to a percentage. They must be
divided by 100 to represent a cosine value (idem for the next
five figures).

Fig. 2. 〈cos2 θ〉 in terms of ρ′
1 and ρ′

2 in case II and N ′ = 0.

values of the inertial contribution ρ′2 very close to 1, j′ is
almost equal to J . L′ has a very small modulus and its
orientation is random. For the same reason as previously,
〈cos2 θ〉 is close to 1/3. On the other hand, for values of
ρ′2 very close to 0, 〈cos2 θ〉 is close to 1/2. This is because
L′ is almost equal to J . The angular distribution P (θ)
in the whole space is then a constant (whereas the analo-
gous distribution in the collision plane is proportional to
1/ sin θ) [3,4,9]. The value of 1/2 of 〈cos2 θ〉 is then recov-
ered from equation (3.1).

〈cos2 χ〉 is represented in terms of ρ′1 and ρ′2 in Fig-
ures 3 and 4. Figure 3 corresponds to case I and N ′ = 0
and Figure 4 to case II and N ′ = 0. For the same rea-
son as previously, we do not display the graphs for cases I
and II with N ′ = 5 and we conclude that both the num-
ber N ′ = Int(x′

M ) of available vibrational states and the
shape of Rγ(J) have a weak influence on 〈cos2 χ〉 (except
again, for ρ′1 approaching 1). For small values of ρ′1 and ρ′2,

Fig. 3. 〈cos2 χ〉 in terms of ρ′
1 and ρ′

2 in case I and N ′= 0.

Fig. 4. 〈cos2 χ〉 in terms of ρ′
1 and ρ′

2 in case II and N ′= 0.

〈cos2 χ〉 is close to 1/3; since j′ has a very small modulus
and a random orientation, the polarization angle distribu-
tion P (χ) in the whole space is proportional to sinχ [3,
4,9]. Following the same reasoning as for the angle θ, the
value of 1/3 of 〈cos2 χ〉 is justified. For values of ρ′2 very
close to 1, j′ is almost equal to J . It is thus orthogonal to
k so that 〈cos2 χ〉 is negligible [3,4,9].

Λ′ is represented in terms of ρ′1 and ρ′2 in Figures 5
and 6. Figure 5 corresponds to case I and N ′ = 0 and
Figure 6 to case II and N ′ = 0. Similar representations are
obtained for both cases I and II and N ′= 5 (not shown).
There are only tiny differences between these two figures.

Last but not least, 〈cos2 θ〉 is also represented in terms
of Λ′ in Figures 7 and 8 for randomly chosen values of ρ′1
and ρ′2. Figure 7 corresponds to case I and Figure 8 to
case II. As a matter of fact, several values of 〈cos2 θ〉 are
consistent with a given value of Λ′, i.e., 〈cos2 θ〉 is not a
function of the single parameter Λ′, in contrast with the
conclusion of Case and Herschbach. However, the curve
corresponding to the Case and Herschbach rule remains
relatively close to our predictions.
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Fig. 5. Λ′ in terms of ρ′
1 and ρ′

2 in case I and N ′= 0.

Fig. 6. Λ′ in terms of ρ′
1 and ρ′

2 in case II and N ′= 0.

6 Conclusion

We have shown that vectorial properties of triatomic bi-
molecular reactions governed by long-range forces are
mainly controled by two factors ρ′1 and ρ′2 respectively
called angular excitation and diatomic inertial contribu-
tion. These factors are related to the mechanical parame-
ters of the system (atomic masses, collision energy, disper-
sion coefficients, etc.) by very simple formulas. In the case
of strong angular excitation, however, a third quantity ap-
pears to play a role, i.e., the total angular momentum de-
pendence of the reaction probability. In the limiting cases
where this probability is a constant (case I) or decreases
(case II), 〈cos2 θ〉 and 〈cos2 χ〉 where θ and χ are the scat-
tering and rotational polarization angles respectively, can
be straightforwardly estimated in terms of ρ′1 and ρ′2 with
the help of Figures 1–4.

This work is to be compared with the one of Case and
Herschbach which argued in the mid-seventies that vec-
torial properties are determined by the parameter Λ′ =

Fig. 7. 〈cos2 θ〉 in terms of Λ′ for a uniform distribution of ρ′
1

and ρ′
2 in the “unit square”. The figure corresponds to case I

and N ′ = 0. The values of Λ′ and 〈cos2 θ〉 must be divided by
100, since they are expressed in this figure as a percentage.

Fig. 8. 〈cos2 θ〉 in terms of Λ′ for a uniform distribution of ρ′
1

and ρ′
2 in the “unit square”. The figure corresponds to case II

and N ′= 0. Same comment as in Figure 7.

〈L′/(L′ + j′)〉, L′ and j′ being respectively the moduli of
the orbital and rotational angular momenta of the prod-
ucts. A simple mathematical relation between 〈cos2 θ〉 and
〈cos2 χ〉 and Λ′ was then proposed. However, Λ′ must be
determined beforehand by phase space theory (PST) cal-
culations, contrary to ρ′1 and ρ′2 . In addition to that,
ρ′1 and ρ′2 appear to be somewhat independent so that
vectorial properties cannot be said to strictly depend on
Λ′. However, Figures 7 and 8 demonstrate that the rule
proposed by Case and Herschbach is reasonable in many
situations.

We are grateful to Dr P. Larrégaray for stimulating discussions
on angular correlations.
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Fig. 9. Some relevant vectors and angles of the problem.

Appendix A

Consider the following vectors represented in Figure 9:

a =
L′

Z × L′

L′
ZL′ sin θ′L

, (A.1)

b = uy, (A.2)

c = a (A.3)

and
d = R′

∞. (A.4)

uy is the unit vector along the Y -axis. The reagent velocity
vector k is supposed to be parallel to uy and the total
angular momentum is supposed to be along the Z-axis.
Since k′ is parallel to R′ for large values of its modulus, θ
is the angle between d and uy. Using the standard identity

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c), (A.5)

we arrive at

cos θ = cosα′
L sin β′

L + sin α′
L cosβ′

L cos θ′L (A.6)

with
cos θ′L =

L′
Z

L′ . (A.7)

Squaring the equation

j′ = J − L′, (A.8)

and given that
J · L′ = JL′

Z , (A.9)

we finally arrive at

cos θ = cosα′
L sinβ′

L + sinα′
L cosβ′

L

J2 + L′2 − j′2

2JL′ .

(A.10)

Fig. 10. As in Figure 9.

Appendix B

From Figure 10, the projection of j ′ on the Y -axis is
given by

j′ · uy = cosχj′. (B.1)

Moreover,

j′ · uy = cosβ′
j(j

′2 − j′2Z )1/2. (B.2)

Therefore,

cosχ = cosβ′
j

(
1 − j′2Z /j′2

)1/2
. (B.3)

Squaring the equation

L′ = J − j′, (B.4)

and given that
J · j ′ = Jj′Z , (B.5)

we finally arrive at

cosχ = cosβ′
j

(
1 −

(
J2 + j′2 − L′2

2Jj′

)2
)1/2

. (B.6)
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